
Fall 2022 MAT265 Assignment 04: Frequency Mining with Singer’s
Discography

Shaokang Li

Introduction:

Frequency-pattern related algorithm is used as an analytical process that finds frequent patterns or
associations from data sets. For example, grocery store transaction data might have a frequent pattern that
people usually buy chips and beer together. With this tool, I would like to check if there’s any pattern in
Album checkouts, specifically, what albums would people like to checkout together? To take a deeper dive
in the CD checkout data, questions below are also considered:

What does people like to checkout together with a specific singer (in this case, Adele’s / Taylor Swift’s)
CD?

FP-Grow (Problem)
Generally, what do people like to checkout together?

How long did each CD last in Library.

New purchase by year together compared with its popularity

These results may give us finding about CD itself and information about the singer’s career status.

Tryout FP-Grow Algorithm

We need to have transaction data like this to utilize the algorithm: [[book1,book2...]
[book3,book2...]...] , which is a vector<vector<Book>> in C++ or list(list(Book)) in Python. Each
element in the list is a transaction history about:

At a certain timestamp, one person checkout some items together.

However, such data isn’t directly available in the database. What we have for a single transaction is
checkout timestamp and a single itemNumber. We may not know what people checkout together at a
certain timestamp if we don’t make any assumption.

Data in Transaction table

Assumption: items checkout at the same time are by the same person

With assumption above, I firstly look into all transaction in one day, find out if there’s any pattern.

Step 01: Get raw transaction data

Step 02: Convert data format

Since MySQL doesn’t support the type of list, I use Python (with Pandas library) to handle further
operations.

Now that the data has been converted to the seemingly desired format. Note that there are double quotes
in some rows while others doesn’t have. We have to perform an extra step to make sure they are in the
same Python format.

select checkOut, bibNumber

from transactions

where checkOut > '2022-10-01';

1

2

3

import pandas as pd

import numpy as np

Read in the data

df = pd.read_csv('transactions.csv')

df.head()

Group data by checkout time, return with a list of list

df_grouped = df.groupby('checkOut')['bibNumber'].apply(list)

df_grouped.head()

df_grouped.to_csv('grouped.csv')

1

2

3

4

5

6

7

8

9

10

Also, the timestamp info has been discarded since it’s not necessary in FP-Grow Algorithm. Each element in
the list is a list of strings. (Rather than list of integer).

Step 03: Feed data into algorithm

I performed the algorithm with 2 different libraries: efficient_apriori and FP-Growth . The
implementation of the latter one is somewhat buggy so I choose the first one instead. These two algorithms
gives the same result. The difference is their time complexity, in which FP-Growth is O(n^2) and Apriori is
O(2^n) . Since the dataset is limited to 1 day, the difference in time complexity won’t impose a great
influence in algorithm’s execution speed.

Result:

Unfortunately, even with low threshold like 0.2, the algorithm won’t return any rules. It can be said that,
there’s no pattern within one day using approach above.

Can it be a matter of time range? One day seems too short.

#Format handling

fp = df_grouped.to_dict()

transactions = list(fp.values())

res = [[str(e) for e in ele] for ele in transactions]

1

2

3

4

from efficient_apriori import apriori

dataset = res

freqItemSet, rules = apriori(dataset, min_support=0.3, min_confidence=0.6)

print(rules)

1

2

3

4

I also use approach above to look any patterns within one month’s transaction history.

However, still no pattern found.

Maybe the pattern can be found within a certain category?

Then, I narrow down the scope to CD. Getting transaction data starts from this September till today and
perform above procedure.

No pattern found.

Finally, I make a loose assumption. Assume checkouts within same hour is the made by the same
person.

select

 cout,
 bibNumber
from spl_2016.inraw

where

 itemtype in (
 'arcd',
 'nacd',
 'cacdnf',
 'jrcd',
 'accd',
 'cacd',
 'cabocd',
 'cccd',
 'calncd',
 'nabocdc',
 'ncbocd',
 'nybocd',
 'jccd',
 'nccd'
)
 and cout > '2022-09-01';

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

select

 date_format(COUT, '%Y-%m-%d %H') as my_date,
 bibNumber
from spl_2016.inraw

where

 itemtype in (
 'arcd',
 'nacd',
 'cacdnf',
 'jrcd',

1

2

3

4

5

6

7

8

9

10

There are some results with a loosened assumption. Below are the dependency rules, which means, rule in
the form a->b people who borrow item a is likely to borrow b together.

 The BibNum to Title correspondence is shown as below

Perform above approach on a certain singer?

It would be interesting to look at a specific singer’s discography, find out if people would like to checkout
some of his/her works together.

Narrow down the range to Adele

 'accd',
 'cacd',
 'cabocd',
 'cccd',
 'calncd',
 'nabocdc',
 'ncbocd',
 'nybocd',
 'jccd',
 'nccd'
)
 and cout > '2022-09-01';

11

12

13

14

15

16

17

18

19

20

21

22

select

 count(*) as borrow,
 bibNumber,
 title
from spl_2016.inraw

where

 itemtype in (

1

2

3

4

5

6

7

Perform algorithms above, we have Album 19 and 21 are 2 albums that people love to checkout
together.

Narrow down to Taylor Swift:

Those who borrow Speak Now is likely to borrow Red
People like to borrow 1989 and Red together.

It’s interesting that people would like to check out consecutively released albums together.
(Speak Now 2010, Red 2012, 1989 2014).

 'arcd',
 'nacd',
 'cacdnf',
 'jrcd',
 'accd',
 'cacd',
 'cabocd',
 'cccd',
 'calncd',
 'nabocdc',
 'ncbocd',
 'nybocd',
 'jccd',
 'nccd'
)
 and cout > '2005-01-01'
 and title in ('19', '21', '25', '30')
group by bibNumber, title

order by borrow desc;

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

select cout, itemNumber

from spl_2016.inraw

where

 bibNumber in (
 2545593,
 2678602,
 2851592,
 3049310,
 3297477,
 3463592,
 3595799,
 3629274
)
where cout<'2018-01-01' and cout>'2010-01-01'

order by itemNumber, cout desc;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Other questions on CDs by Taylor Swift

Except for frequency pattern mining, below questions may also give some insights on singer’s career and
library’s management.

How long did each CD last in the library?
Dos a single item change its barcode?
How about the new purchase each year compared to its checkout times?

Duration:

To calculate the duration of a single item last in the library, we need to know the start date and end date.
Since there’s no end date provided (No info on whether an item is missing or discarded), I made below
criteria for a certain item considered as missing or inactive . And the calculation is performed on 4
different albums from her.

Criteria: Item that no one borrow for >= 1000 days from today as inactive. Otherwise, it’s still in
active state and will not be taken into account.

Step 01: Get raw data of the Album (Using BibNumber)

Step 02: Convert the data format

To calculate the duration, we need to know the start and end date. A quick solution is to group the data by
its itemNumber, and sort by checkout time. The first checkout time is the start date and the last one is the
end date (if it’s inactive).

Step 03: Calculate duration

Barcode:

Query below is used to check if there’s any change in barcode for the same itemNumber

New purchase versus Checkouts:

Since there’s no raw data on supply chain, I have to make yet another assumption.

import pandas as pd

import numpy as np

Read in the data

df = pd.read_csv('fearless.csv')

df.head()

df_grouped = df.groupby('itemNumber')['cout'].apply(list)

df_grouped.head()

1

2

3

4

5

6

7

8

9

10

fp = df_grouped.to_dict()

missing_item_lifespan = []

for kv in fp.items():

 dt = pd.to_datetime(kv[1][0][0:10], format='%Y-%m-%d')
 dt1 = pd.to_datetime(kv[1][-1][0:10], format='%Y-%m-%d')
 today = pd.to_datetime('2022-11-01', format='%Y-%m-%d')
 if ((today-dt1).days>1000):
 missing_item_lifespan.append((dt1-dt).days)

avg = sum(missing_item_lifespan)/len(missing_item_lifespan)

print("The average is ", round(avg,2))

1

2

3

4

5

6

7

8

9

10

11

12

select *

from spl_2016.inraw t2

 inner join spl_2016.inraw t1 on t1.itemNumber = t2.itemNumber
where

 t1.barcode <> t2.barcode
 and t1.bibNumber = 2545593;

1

2

3

4

5

6

Assumption: New purchase is approximately the time of the first checkout.

With the converted data, we can easily find out how many new purchases per year.

Album Fearless, Overview:

Fearless: 2008.8 - 2022.7

Average Duration:

1021.13 days (avg)
1031 days (All items)
 Each CD on average last for 3 years

Purchase:

Checkouts:

time_dict = dict.fromkeys([str(x) for x in range(2007,2023)], 0)

for kv in fp.items():

 time_dict[kv[1][0][0:4]]+=1
print(time_dict)

1

2

3

4

Album 1989, Overview:

1989: 2014.10 - 2022.9

Average Duration:

551.12 days
712 days (All items)

Purchase:

Borrow:

Album Reputation, Overview:

Reputation: 2017.12-2022.09

Average Duration:

The average is 262.93 days
695 days (All items)

Purchase:

Borrow:

Album Lover, Overview:

Lover: 2019.09-2022.09

Average Duration:

88.5 days
651 days (All items)

Purchase:

Borrow:

Overall Visualization

The visualization: Borrow_Purchase.html

Conclusion:

It’s interesting that people would like to check out consecutively released albums together.

Assumptions affect the result of the FP-algorithm in our case.

For some items, purchase and checkout times can be hugely different.

CDs last much shorter than expected. A single CD lasts around 3 years and then becomes inactive.

Often the library purchase albums in consecutive 2 years after the album is released. They seldomly
purchase new copies afterward.

If take all CDs by Taylor Swift into account, each album last around 2 years.

Music streaming service did impact the checkout amount of the CD.

1989 has double the sale of Fearless, but the checkout times is almost halved.

https://naoyuki.top/DataViz/punchcard

	Fall 2022 MAT265 Assignment 04: Frequency Mining with Singer’s Discography
	Introduction:
	Tryout FP-Grow Algorithm
	Assumption: items checkout at the same time are by the same person
	Perform above approach on a certain singer?

	Other questions on CDs by Taylor Swift
	Duration:
	Criteria: Item that no one borrow for >= 1000 days from today as inactive. Otherwise, it’s still in active state and will not be taken into account.

	Barcode:
	New purchase versus Checkouts:
	Assumption: New purchase is approximately the time of the first checkout.

	Album Fearless, Overview:
	Album 1989, Overview:
	Album Reputation, Overview:
	Album Lover, Overview:
	Overall Visualization

	Conclusion:

