
Fall 2022 MAT265 Outliers

Shaokang Li

Introduction:

For this week‘s assignment, I try to find outliers of different kinds.

Using standard deviation of checkout times to find the most popular and unpopular items within CD
category
Using both purchase number and checkout times as the indicator of popularity, applying algorithms
find out the outliers.
Since itemNumber is auto incremented when entering the library, this attribute should be consecutive.
I want to find out if the data follows such pattern. If not, what’s the distribution looks like? What’s the
proportion of item that are never appear in the database?

Query 01:

For the first query, I tried to find out the most popular and unpopular items within CD category. The
checkout times is used as the indicator of popularity.

QUERY:

This query is used to find out the quartiles of each bibNumber by their checkout numbers. However, the
window function NTILE only works in MySQL 8.0. Thus, I port this to Python to do further processing.

SELECT

 count(cout) as checkouts,
 bibNumber,
 NTILE(4) OVER (
 order by
 checkouts
) as quartile
FROM spl_2016.inraw

where

 itemtype in (
 'arcd',
 'nacd',
 'jrcd',
 'accd',
 'cacd',
 'cccd',
 'jccd',
 'nccd'
)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Use query below to get the raw data for further processing.

Python Script:

Below Python script is used to find out outliers, outliers are defined as the article below. We filter out data
that are larger than the upper limit and lower than the lower limit. The upper limit is defined as

https://dataschool.com/how-to-teach-people-sql/how-to-find-outliers-with-sql/

 and cout > '2020-01-01'
group by bibNumber;

20

21

SELECT

 count(cout) as checkouts,
 bibNumber,
 title
FROM spl_2016.inraw

where

 itemtype in (
 'arcd',
 'nacd',
 'jrcd',
 'accd',
 'cacd',
 'cccd',
 'jccd',
 'nccd'
)
group by bibNumber;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

import pandas as pd

import numpy as np

df = pd.read_csv('CD_popularity.csv')

df.head()

print(df.shape)

diff = df.checkouts.quantile(0.75)-df.checkouts.quantile(0.25)

upper_limit = df.checkouts.quantile(0.75) + 1.5*diff

lower_limit = df.checkouts.quantile(0.25) - 1.5*diff

print(upper_limit, lower_limit)

filtered_data = df[df.checkouts>upper_limit].sort_values(by=

['checkouts'],ascending=False)

ratio = df.shape[0]/filtered_data.shape[0]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://dataschool.com/how-to-teach-people-sql/how-to-find-outliers-with-sql/

RESULT:

The upper limit and lower limit for outliers are, it is worth noting that the lower limit is actually negative. So
we only have to filter out data that are larger than the upper limit.

The number 0.097 means the outliers are nearly 10% of all CDs. And The most popular one is Fame
Monster by Lady Gaga and 21 by Adele, also a Spanish Learning CD.

If we take a closer look at these outliers, they made up of 46.9% of total checkouts.

print(ratio)

filtered_data.head()

15

16

Query 02:

For the second query, I’m trying to use 2 columns as the indicator of popularity. The purchase number and
the checkout times. Then I’m trying to apply outlier detection algorithm in Python, this may also give us
some insights about the popularity distribution of CD data.

QUERY:

Below query returns the CD data with its checkout times and its number of copies.

Python Script:

To check ouliters with 2 dimensional data, I used sci-kit learn package for outlier classification. The Local
Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method which computes the local
density deviation of a given data point with respect to its neighbors. It considers as outliers the samples
that have a substantially lower density than their neighbors. In this case, a CD that has very high purchase
and very low borrow amount.

sum_filtered = filtered_data['checkouts'].sum()

sum_all = df['checkouts'].sum()

checkouts_ratio = sum_filtered/sum_all

print(checkouts_ratio)

1

2

3

4

5

SELECT

 count(cout) as checkouts,
 count(distinct(itemNumber)) as copies,
 bibNumber,
 title
FROM spl_2016.inraw

where

 itemtype in (
 'arcd',
 'nacd',
 'jrcd',
 'accd',
 'cacd',
 'cccd',
 'jccd',
 'nccd'
)
 and cout > '2010-01-01'
group by bibNumber, title;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html

import numpy as np

import matplotlib.pyplot as plt

from sklearn.neighbors import LocalOutlierFactor

from matplotlib.pyplot import figure

figure(figsize=(8, 6), dpi=80)

df_new = pd.read_csv('CD_popularity_2D.csv')

df_new.head()

arr = np.array(df_new[['checkouts','copies']])

print(arr)

Generate train data

X = arr

fit the model for outlier detection (default)

clf = LocalOutlierFactor(n_neighbors=20, contamination=0.1)

use fit_predict to compute the predicted labels of the training samples

(when LOF is used for outlier detection, the estimator has no predict,

decision_function and score_samples methods).

y_pred = clf.fit_predict(X)

X_scores = clf.negative_outlier_factor_

plt.title("Local Outlier Factor (LOF)")

plt.scatter(X[:, 0], X[:, 1], color="k", s=3.0, label="Data points")

plot circles with radius proportional to the outlier scores

radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())

plt.scatter(

 X[:, 0],
 X[:, 1],
 s=10 * radius,
 edgecolors="r",
 facecolors="none",
 label="Outlier scores",
)

plt.axis("tight")

plt.xlim((0, 1000))

plt.ylim((0, 100))

legend = plt.legend(loc="upper left")

legend.legendHandles[0]._sizes = [10]

legend.legendHandles[1]._sizes = [20]

plt.show()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

RESULT:

The x axis is the checkout times, the y axis is the purchase amount. The red dots are the CDs considered as
outliers. In this case, there are some CDs has very low checkout times and comparatively adequate stock. (A
CD has 2 checkouts and 5 purchase times). There are also some CDs has a high checkout times but limited
stock.

The outlier ratio can be computed as below:

This give a result of 0.03372, which means around 3% of the books are either overstocked or understocked.

Query 03:

If we consider all the bibNumber to be consecutive, the number missing can be items that no one borrow. I
first filtered all bibNumber that is smaller than 10k.

num_outlier = len(radius[radius>0.01])

outlier_ratio = num_outlier / len(X)

1

2

There are 2973 entries, which means there are only 29.7% bibNumber being borrowed in the first 10000
bibNumber.

I try to furthur visualize the bibNumber and itemNumber distribution on the 2D plane in the first 100k
bibNumber.

Python Script:

The distribution looks as below, there are bibNumber that has a wide range of itemNumber, which means it
maybe restocked over a very long period of time. Also, in the lower section of the graph, there are some
points forming a sloped line. Points on these lines means the itemNumber and bibNumber grows
proportionately. For example, everytime the library purchase a new book, they purchase a fixed amount of
copies. Note that these lines appear periodically, which is interesting to see.

select

 distinct bibNumber,
 title
from spl_2016.inraw

where `bibNumber` < 10000

order by bibNumber;

1

2

3

4

5

6

select

 distinct bibNumber,
 itemNumber
 title
from spl_2016.inraw

where `bibNumber` < 100000

order by bibNumber;

1

2

3

4

5

6

7

arr_dist = np.array(df_dist[['bibNumber','itemNumber']])

figure(figsize=(10, 10), dpi=200)

Generate train data

X = arr_dist

plt.title("bibNumber,itemNumber distribution")

plt.scatter(X[:, 0], X[:, 1], color="k", s=1.0, label="Data points")

plot circles with radius proportional to the outlier scores

plt.axis("tight")

plt.xlim((0, 100000))

plt.ylim((50000, 10000000))

legend = plt.legend(loc="upper left")

legend.legendHandles[0]._sizes = [10]

legend.legendHandles[1]._sizes = [20]

plt.show()

plt.savefig('img.png')

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Conclusion:

After using different algorithms with outliers, here’s my conclusions.

If we use the quantile method with threshold above, there are 10% outliers making up 46.9% of total
checkouts.
If we use local detection filter algorithm to the dataset, we may find that around 3% of the books are
outliers and they are likely either overstocked or understocked.
In the first 10k bibNumbers, only 29.7% appears in the database.
There are items that being restocked over a long period of time.
There are periodic patterns that shows proportionate growth between itemNumber and bibNumber.

	Fall 2022 MAT265 Outliers
	Introduction:
	Query 01:
	QUERY:
	Python Script:
	RESULT:

	Query 02:
	QUERY:
	Python Script:
	RESULT:

	Query 03:
	Python Script:

	Conclusion:

