Computer Vision for the
OU Fish Visualization Project

Status Report 6-16-2006

Wesley Smith

Introduction

The OU Fish Visualization Project consists of two main systems: a computer vision system and a visualzation
system. The computer visualization system’s task is to identify and track fish for extended periods of time. It
processes video data from cameras trained on fish tanks and outputs tracking data to the visualization system in

real-time. The visualzation system then interprets the data, producing imagery across a series of monitors.

In order for the visualization to be expressive, it needs expressive data. The term expressive data desribes a
particular relationship among data streams denoting a set of data streams with rich interconnections spatially,
temporally, and critically. In the case of fish tracking, this means not just providing fish IDs with location over
time, but also information describing the algorithm’s process over time such as statistical parameters from vari-
ous stages of the image processing unit. An initial set of data parameters includes number of fish being tracked,
their IDs and position, the time of the data, how many blobs does the algorithm see, how similar is the current
frame to the background, and the percentage of pixels in the image the algorithm see movement in. As the algo-

rithm develops, more data streams can be added to reflect new stages in the process.

Computer Vision Problem and Approach

The problem of tracking fish over long periods of time is a twofold problem of detecting fish in an image and
identifying individual fish from one frame to the next. The first problem is the most straightforward. Fish are
always moving a detectable amount, even when they’re sleeping so they can be identified based on a simple
persistent motion tracking algorithm. The identification of individual fishes across frames is a much trickier
problem with lots of special cases that need to be properly handled. For instance, if two fish move close to each
other and then split apart, how can the system tell which fish has gone where or what happens when a fish hides
and reappers a few minutes later? These kinds of issues can’t be addressed by a generic algorithm. Instead, a
part of the algorithm must be context aware and recognize that two fishs’ trackpoints have essentially merged

and will split shortly or that a fish has just hidden itself and will reappear from the same spot soon.

The persistent motion tracking algorithm for detect fish is basically a fancy background subtraction algorithm.

The first stage of the process takes an incoming frame and subtracts it from a background image. This is then

Basic Image Processing Schematic

Raw Image

Background

Raw and Difference

> Difference

v

Blob Filter

v

thresholded and passed to a blob filter that keeps only shapes of a certain size. The result is a rough segmenta-
tion of fish from the video image. As a final step, the segmentation mask is fed back in to the system to update
the background. In other words, it is used as a motion mask for preventing foreground objects from being
added to the background image. When a new frames comes in to the system, the motion mask is used to pull

out only background pixels and those pixels are accumulated into the background image.

The motion mask feedback is not flawless however and in some cases can result in “motion mask creep”. This
is where the motion mask prevents any new information from being added to the background making the back-
ground information more and more out of date. If the motion mask is identifying a fish, this is not a problem
since identifying a fish is the goal, but if the motion mask is erroneously marking a location where some other
type of movement is occurring such as water motion or changes in lighting, then the erroneous segmentation

will actually be amplified as the segmented region grows.

Fortunately the fact that the fish are constantly moving can be used to prevent this kind of mask creep. If a
pixel hasn’t been updated for a given period of time because it has been constantly blocked by the motion mask,

the motion mask is overridden and the pixel is updated anyway. If the pixel the next new pixel at this location

Camera Input Moving Objects

é Mask

I — Yes Pixel Masked or

ncremgnt t|meout Passed Timeout <+—
oun Threshold?

Accumulated Image,
Increment Acummulate Counter,
Reset Timeout Counter

Adaptive Background Algorithm

is still different enough (meaning it’s likely a fish), then it will still be detected as a motion pixel. When added
to the system, this timeout feature vastly improved the segmentation results by reducing the number false posi-

tives.

The algorithm for identifying and tracking of the fish between frames uses results from the from the segmenta-
tion stage as its input. It takes the motion mask and determines shapes that are likely candidates for being fish.
As the shapes move from one frome to the next, it marks the path the shapes are taking by giving unique IDs to
them the persist over time. Although seemingly simple there are many cases where the tracking algorithm can

break down, causing a tracked shape to be lost or confused with another shape. Scenarios where this might hap-

Camera Input

Background
Accumulator

\%
Background .

Subtraction

Threshold

v

Blob Filter

v

Dilation

Y v

Moving Objects —>| Blob ID Tracking

!

Database

Image Processing Flow Diagram

pen include the case where two fish come together as indistinguishable shapes and then move apart. Identifying
which of the two fish went in what direction can be difficult in this case. Also, if a fish hides or is acculded from
the camera, the tracking system has to be able to detect this and be aware enough to wait for the fish to reappear
in a logical location for retagging the shape with the old ID so that the data points representing the fish’s loca-
tion over time are consistent. Information such has far a fish can move between frames in any given direction
can also be used to properly pick out which shapes are actually fish by giving a likelihood estimate based on the

previous frame’s results.

Currently, only a basic ID and point tracking algorithm is in place. The scenarios described above as needing
special attention have not been addressed and will likely cause some errors or inconsistencies in the tracking data.
The current state of the tracking system can however provide feedback to the segmentation algorithm, improv-
ing results on that end. The shapes marked as fish can be used as a probability mask for filtering the background
from the incoming frame in addition to the stages that are already in place, providing a sanity check for those

results.

Current System

The system that is currently in place for testing the fish tracking algorithms uses MaxMSP/Jitter for image cap-
ture and streaming as well as analysis and data storage. Installed in the MSI REEF aquarium center is a ceiling
mounted and a networked computer setup for streaming the video to a remote machine for processing. A Jit-
ter patch running on the capture machine allows remote control of the capture settings such as framerate, color
or grayscale image, size of the image, and IP address to stream the video to. A complementary patch has been
built that connects to the machine and sets these parameters. In addition, an SSH server has been setup on the
machine for remote login and administration of the machine. The machine can be reset and the software updat-
ed through the SSH mechanism. When the machine starts up, it automatically logs in and launches the capture
and streaming video patch. If this patch is replaced with a new version, the next time the computer is booted

up, the new vesion will be launched and the changes will take effect.

On the processing end, a video receiving patch grabs the video stream from the network and runs it through

a tracking and segmentation algorithm, generating data in realtime for the visualizations. The video image is

passed through the computer vision system described above and the results are stored in a database (or streamed
to the visualization system when that’s running). The database is persistent across sessions, so old data can be

queried if needed and piped into the visualization system.

Camera

Firewire

»| Video Capture

i

Network Message —» Video Streamer
Interpreter

Video Capture Controller

Video Analysis

Database

Remote Capture System Schematic

The database is an embedded SQL database called HSQLDB. It is loaded in an mxj (a Max JAVA object) upon
instantiation. It’s data is stored across a small set of files on disc which are automaticlly read when the database
patch is loaded. Due to current limitations of the mxj HSQLDB implementation, the TIME and TIMESTAMP
SQL fields are not used to store the time a data point is recorded. Instead, separate fields for Year, Date, Hour,
Minute, and Millisecond provide the time a datapoint was recorded. Currently, up to 5 simultaneous points are

recorded at any given time although this can easily be changed if more or less data points are needed.

In any given frame of analysis, one or more might not be seen by the system, resulting in less data points. In
this case, a (-1, -1) is given for the (x, y) location of the fish in the image. Otherwise, coordinates are given in
pixels. Currently, this range is [0, 120) for x and [0, 90) for y. To query the database, standard SQL commands

are used to acquire the desired data.

- —— —_—

= = T e ST W -

ProcessVideo2

simulate-Sender

Fish Segmentation Patch

_ Background Accumulation Controls

|glim €& |

o._o_u_um-.om_.; H1 _ _o_._o_uooc:ﬁ H1 _ _:_._._mo_.;ooci 1 _
L I T

-

|metro 20| E E
L 1

Jit.gt.movie 220 240

x®ray . jit.background

Background

Elob Size Thieshald

threshald $1

Jit.rgb2lurna

5 widstreamn

Subtraction Threshold

aNaRa] Max

1
|ev jit.label @charmode 1 @mode O |

1990-2003F Cyeling ‘74 ¢/ IRCAM

| DATA: 2008 17 2 39 22 289 92.250000 45 607143 53 757576 65.191917 70.810214 56.94594¢ 1 .000000 -1 000000 -1.000000 -1.000000
(DATA: 2008 17 229 22 254 22902705 €3.6111135 -1.000000 -1.000000 -1 000000 -1.000000 -1.000000 -1 000000 -1 000000 -1.000000
DATA: 2008 17 2 29 22 4235 9Z.025002 44299939 52 424207 £3.410520 73922574 84974129 -1.000000 -1 000000 -1.000000 -1 000000
DATA: 2006 17 2 29 22 426 £1.282920 66,0851 0& -1.000000 -1 000000 -1 000000 -1,000000 -1,000000 -1,000000 -1 000000 -1 000000
DATA: 2006 17 2 39 22 550 91 675003 44 000000 20431190 66. 770645 -1.000000 -1 000000 -1.000000 -1.000000 -1.000000 -1 000000
DATA: 2006 17 239 22 617 21 628571 44 285713 81 290321 58 451614 77800003 66 659997 -1 000000 -1 000000 -1.000000 -1.000000
DATA: 2006 17 2 39 22 682 91 730000 44 136364 30551914 67.127663 68.942856 87 028572 -1.000000 -1 000000 -1.000000 -1.000000
DATA: 2006 17 2 39 22 755 76976189 66 5395680 72 076920 86.000000 -1.000000 -1 000000 -1.000000 -1.000000 -1 000000 -1 000000
DATA: 2006 17 2 39 22 812 91 540543 44 567566 77157898 67.0701 75 -1.000000 -1 000000 -1.000000 -1.000000 -1 000000 -1 000000
DATA: 2008 17 2 29 22 820 7& 689063 66 965218 62 645164 87 161292 -1.000000 -1 000000 -1.000000 -1,000000 -1,000000 -1 000000
DATA: 2008 17 2 29 22 949 91 212957 44 129524 73 Te57E2 67090028 -1 000000 -1 000000 -1.,000000 -1.,000000 -1,000000 -1 000000
DATA: 2008 17 2 29 22 12 91 £13287 44.000000 72242240 £8.142631 T4 400002 23.199997 -1,000000 -1.000000 -1.000000 -1.000000
DATA: 2006 17 2 39 23 87 91 885712 44 028572 T6 062500 62750000 76 532460 84 720766 -1 000000 -1 000000 -1.000000 -1.000000
DATA: 2008 17 2 29 33 146 31 726859 44 603263 T3 TFES14 65573549 -1.000000 -1 07—~ ~ Esh

DATA: 2006 17 2 39 23 209 72301079 70741936 67 279311 87 344826 -1.000000 -1 .0
DATA: 2006 17 2 39 23 277 54.840000 43.279999 72 863014 £9.917209 78.785713 83 6

sray. jit.blobtrack

Jit.gl.mesh fish @draw_rmoede points @peint_size 5 @color 1 1 006
@depth_enable 0 @blend_enable 1 @scale 1.2 1.2 1 @autornatic 0

‘ CATA: 2006 17 2 39 23 243 91 687500 44 7183750 71 268814 70032257 £9.849993 84 .9
DATA: 2008 17 2 29 22 421 92620000 45 560001 65062828 71.425529 FZ.07142¢ 701
DATA: Z006& 17 2 39 22 453 92.025002 44299999 62 T25322 70.623856 -1.000000 -1 .0
DATA: Z0068 17 2 39 22 5435 91.9219998 45.560001 64027041 71 203705 72924784 26.0
DATA: 2006 17 239 22 610 91921051 44.500000 &5 070537 71.494118 -1.000000 -1.0
DATA: 2006 17 239 22 672 67103447 71 241379 68 699997 87.599993 -1 000000 -1 .0)
DATH: 2006 17 2 39 22 746 65077774 71 744446 TT7.000000 84 400002 &7 586205 87.9
CATa: 2006 17 2 39 23 809 91 574997 44 075001 &5 454544 71 525253 -1.000000 -1 .0
CATA: 2006 17 2 39 22 879 91 20000%F 44 599992 &0 555557 62.5535557 62.565216 72.0
DATA: 2008 17 2 29 22 9435 60.34482¢ 72 2102459 -1.000000 -1.000000 -1.000000 -1.0(
DATA: Z008 17 239 24 11 1. 782782 44 162163 60.72257Z 71.628571 -1.000000 -1.00
DATA: Z00& 17 2 39 24 21 52799993 71 773821 £2.951218 87.024391 -1.000000 -1.00
STATUS: 1 query

S—

-ishTrackingDatabase

|Js Databaze.js |[p TDavs __n_cm_:r_ SELECT * FROM Fish

The previous image is a screen grab of the system components running on recorded data. A simluation patch
has been built that simulates the way the streaming data interacts with the image processing system for offline
work. The main workhorse is the image processing patch (blue background). It segments fish from the image
and outputs up to 5 track points depending on the how many fish it sees. For visual feedback, a display window

shows the raw video image with the fish highlighted and a yellow trackpoint indicating the location of the fish.

The third patch in the screenshot contains the database. If a record switch is turned on, data will flow from the
image processing system and be recorded into the data base for later retrieval. Values are stored with the cur-

rent time of day up to millisecond exxuracy for proper sequencing of data upon retrieval at a later time.

Future Work

There are many improvemnts that can be made to the system from augmenting the algorithms for new scanarios
to making the algorithm more adaptable and self-adjusting. The current algorithm uses a series of threshold
values to process the video image. As an improvement, these values could be made adaptive based on the state
of the system. For instance, if the image changes drstically because of new lighting conditions, the background
subtraction threshold could be adjusted to compensate. If not enought blobs pass through the blob filter, the
size threshold could be lowered so that more blobs are seen. Ideally, these automatic adjustments would be tied
to measurements taken on the system so that the tracking results remain consistent throughout varying image

conditions.

Another possible improvment might involve using a stereo tracking system to identify where fish are depth-wise
in the tank. A stereo tracker would not only allow fish to be tracked in the Z-direction, but also provide redun-
dancy in the tracking algorithm by providing verification. It remains to be seen however whether it is worth

the expense and complexity of handling two simultaneous video streams. A stereo systemw ill require twice as

much input bandwidth and potentially twice as much processing power which may overburden the machines.

